

Vishay Semiconductors

Band Switching Diodes

Features

- Silicon Planar Diodes
- · Low differential forward resistance
- Low diode capacitance
- · High reverse impedance

Applications

Band switching in VHF-tuners

Mechanical Data

Case: MiniMELF Glass Case (SOD-80)

Weight: approx. 30 mg Cathode Band Color:Black **Packaging Codes/Options:**

GS18 / 10 k per 13" reel (8 mm tape), 10 k/box GS08 / 2.5 k per 7" reel (8 mm tape), 12.5 k/box

Parts Table

Part	Type differentiation	Ordering code	Remarks
BA682	$V_R = 35 \text{ V, } r_f @ I_F 3 \text{ mA} = \text{max } 0.7 \Omega$	BA682-GS18 or BA682-GS08	Tape and Reel
BA683	$V_R = 35 \text{ V}, r_f @ I_F 3 \text{ mA} = \text{max } 1.2 \Omega$	BA683-GS18 or BA683-GS08	Tape and Reel

Absolute Maximum Ratings

 T_{amb} = 25 °C, unless otherwise specified

Parameter	Test condition	Part	Symbol	Value	Unit
Reverse voltage			V _R	35	V
Forward current			I _F	100	mA

Thermal Characteristics

T_{amb} = 25 °C, unless otherwise specified

Parameter	Test condition	Symbol	Value	Unit	
Junction ambient	on PC board 50 mmx50 mmx1.6 mm	R_{thJA}	500	K/W	
Junction temperature		T _j	150	°C	
Storage temperature range		T _{stg}	-55 to +150	°C	

www.vishay.com

Rev. 1.4, 17-Feb-04

Vishay Semiconductors

Electrical Characteristics

 T_{amb} = 25 °C, unless otherwise specified

Parameter	Test condition	Part	Symbol	Min	Тур.	Max	Unit
Forward voltage	I _F = 100 mA		V_{F}			1	V
Reverse current	V _R = 20 V		I _R			50	nA
Diode capacitance	f = 100 MHz, V _R = 1 V		C _D			1.5	pF
	f = 100 MHz, V _R = 3 V	BA682	C _D			1.25	pF
		BA683	C _D			1.2	pF
Differential forward resistance	f = 200 MHz, I _F = 3 mA	BA682	r _f			0.7	Ω
		BA683	r _f			1.2	Ω
	f = 200 MHz, I _F = 10 mA	BA682	r _f			0.5	Ω
		BA683	r _f			0.9	Ω

Typical Characteristics (T_{amb} = 25 °C unless otherwise specified)

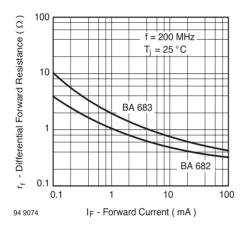
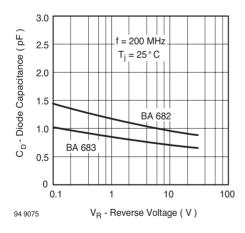
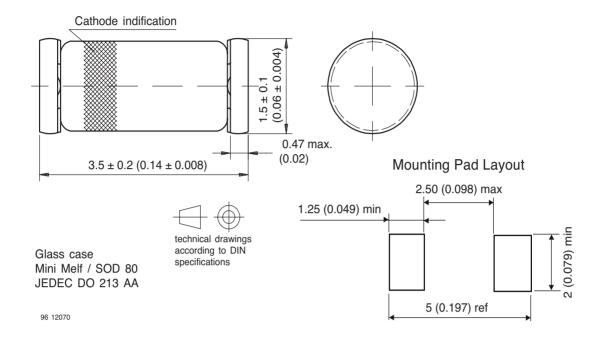


Figure 1. Differential Forward Resistance vs. Forward Current




Figure 2. Diode Capacitance vs. Reverse Voltage

www.vishay.com Rev. 1.4, 17-Feb-04

Vishay Semiconductors

Package Dimensions in mm (Inches)

BA682/BA683

Vishay Semiconductors

Ozone Depleting Substances Policy Statement

It is the policy of Vishay Semiconductor GmbH to

- 1. Meet all present and future national and international statutory requirements.
- 2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment.

It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs).

The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances.

Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents.

- 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
- 2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA
- 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.

Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances.

We reserve the right to make changes to improve technical design and may do so without further notice.

Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use Vishay Semiconductors products for any unintended or unauthorized application, the buyer shall indemnify Vishay Semiconductors against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use.

> Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany Telephone: 49 (0)7131 67 2831, Fax number: 49 (0)7131 67 2423

www.vishay.com Document Number 85530 Rev. 1.4, 17-Feb-04